

First Isolation and Characterization of an Electron Transfer Salt of a Tetracyanoquinodimethane with Porphyrinatomanganese(II) Having Novel *cis*- μ -Coordination Manner: A Molecule-based Magnet with a 2.3 K T_c

Ken-ichi Sugiura, Shinji Mikami, Mitchell T. Johnson, [†] Joel S. Miller, [†]

Kentaro Iwasaki, ^{††} Kazunori Umishita, ^{††} Shojun Hino, ^{††} and Yoshiteru Sakata*

The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047

[†]Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, U.S.A.

^{††}Faculty of Engineering, Chiba University, Inage-ku, Chiba 263-8522

(Received June 3, 1999; CL-990471)

An electron transfer salt comprised of 2,5-dimethyl-7,7,8,8-tetracyano-*p*-quinodimethane (DMTCNQ) with porphyrinatomanganese(II) was structurally and magnetically characterized. The $[\text{DMTCNQ}]^{\bullet}$ exhibits a novel *cis*- μ -coordination motif.

Polymeric electron-transfer (ET) salts constructed from porphyrinatomanganese(II) ($[\text{MnP}]$) and a strong electron acceptor such as tetracyanoethylene (TCNE)^{1,2} have attracted much attention due to the observation of bulk ferrimagnetic ordering.³ To gain a deeper understanding of these magnets, new acceptors that can stabilize ferrimagnetic ordering are sought. Several groups have replaced TCNE with π -expanded 7,7,8,8-tetracyano-*p*-quinodimethane (TCNQ) **1a**, however, no information concerning the structure of these complexes is available and therefore, a detailed understanding on the magnetism is lacking.⁴ Recently, we reported the unprecedented honeycomb supramolecular structure as a product of **1a** and *meso*-tetrakis(2,4,6-trimethylphenyl)porphyrinatomanganese(II), **2a**, however, the diamagnetic dimerized dianion of **1a** displayed no magnetic ordering.⁵ Herein, we report the first isolation and characterization of an ET salt of a substituted TCNQ, 2,5-dimethyl-7,7,8,8-tetracyano-*p*-quinodimethane, **1b**, with **2a** having a novel *cis*- μ -coordination.

The reaction of **2a**⁵ and **1b** in *p*-xylene led to the isolation of $[\text{2a}][\text{1b}] \cdot 2p$ -xylene.⁶ X-Ray photoelectron spectroscopy reveals Mn core ionization potentials of 642.8 eV for $\text{Mn}2\text{p}_{3/2}$ and 654.6 eV for $\text{Mn}2\text{p}_{1/2}$ characteristic of hexacoordinated Mn^{III}.^{7,8} The ν_{CN} values of the $[\text{2b}][\text{1b}]$ (2184 and 2160 cm⁻¹)

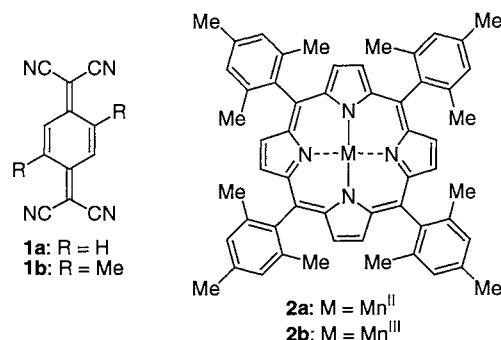


Figure 1.

are shifted to lower energy from the 2223 and 2212 cm⁻¹ observed for **1b** consistent with reduction of **1b** to $[\text{1b}]^{\bullet}$. The IR data and the observed bond lengths of **1b** (*vide infra*) support one electron transfer from Mn^{II} to **1b** yielding $S = 2$ for $[\text{2b}]^+$ and $S = 1/2$ for $[\text{1b}]^{\bullet}$.

X-Ray analysis⁹ revealed that $[\text{2b}][\text{1b}]$ forms one-dimensional (1-D) chains comprised of alternating $[\text{2b}]^+$ and $[\text{1b}]^{\bullet}$ with each Mn^{III} being hexacoordinate *cis*- μ -N-bound to two $[\text{1b}]^{\bullet}$'s (Figure 2). This 1-D coordination polymeric motif has been observed for most magnetically ordered $[\text{MnP}][\text{TCNE}]$ complexes.^{1,2} Each $[\text{1b}]^{\bullet}$ bonds to two Mn^{III}'s in a *cis*-manner. This is the first report of this novel coordination geometry.^{1,3,4} The $[\text{1b}]^{\bullet}$ is nonplanar as the characteristic bond alternation usually seen for quinoids is lost consistent with its anionic nature. Furthermore, the increased single bond character of exo

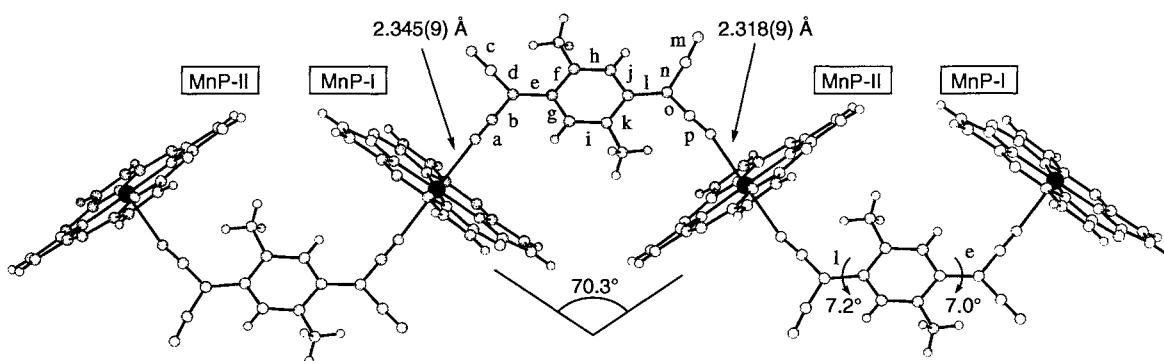
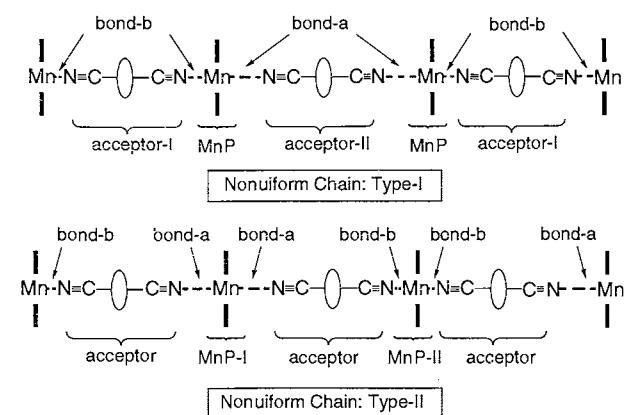



Figure 2. A segment of the 1-D chain structure. For clarity, solvent molecules and aryl groups of $[\text{2b}]^+$ were omitted. Only Mn^{III} is located on the inversion center of $P\bar{1}$ space group. Intramolecular bond distances of $[\text{1b}]^{\bullet}$ are the following: a: 1.14, b: 1.44, c: 1.14, d: 1.39, e: 1.43, f: 1.46, g: 1.39, h: 1.36, i: 1.39, j: 1.40, k: 1.43, l: 1.45, m: 1.14, n: 1.41, o: 1.41, and p: 1.17 Å. The mean Mn-N(**2b**) distances are 2.001 and 1.996 Å for MnP-I and MnP-II, respectively.

Table 1. Summary of structural features and magnetic properties of $[\text{MnP}][\text{acceptor}]$ having nonuniform chain structures, Type-I and Type-II.

	Type	bond-a (\AA)	bond-b (\AA)	Δ^a (\AA)	θ (K)	T_c (K)	Ref.
$[\text{MnOEP}][\text{TCNE}]^b$	I	2.52	2.36	0.16	5	c)	10
$\beta\text{-}[\text{MnPc}][\text{TCNE}]^b$	I	2.42	2.34	0.08	12	c)	11
$\beta\text{-}[\text{MnTF}_4\text{OMePP}][\text{TCNE}]^b$	II	2.28	2.29	0.01	93	10.3	12
[2b][1b]	II	2.35	2.32	0.03	23	2.3	d)

^a Δ (\AA) = [bond-a] - [bond-b]. ^b OEP: octaethylporphyrinato, Pc: phthalocyanato, TF₄OMePP: *m*eso-tetrakis(2,3,5,6-tetrafluoro-4-methoxyphenyl)porphyrinato. ^c Paramagnetic behaviour, not magnetically ordered. ^d This work, see Ref. 13.

methylene bonds enable about 7° rotations of dicyanomethylene units toward the central six-membered ring around bond-e and bond-l, Figure 2.

Two types of nonuniform chains have been reported, Type-I and Type-II (Table 1). Type-I has each acceptor on a center of symmetry and different orientations for nearest neighbor acceptors in a chain,^{10,11} while each acceptor does not lie on a center of symmetry for Type-II and although all acceptors are the same, the bonding of an acceptor is different to each Mn it bonds.¹² The 1-D [2b][1b] chain is nonuniform and is classified into Type-II, as unlike most $[\text{MnP}][\text{TCNE}]$ complexes.^{1,2} The Mn-N_{1b} distances are 2.345(9) and 2.318(9) \AA .¹³ The dihedral angles between [1b][•] and porphyrin planes are 56.8° and 49.0° for MnP-I[•]•[1b][•] and MnP-II[•]•[1b][•], respectively. The dihedral angle between the two adjacent porphyrin rings in the chain is 70.3° which is the largest value comparing with those for reported 1-D $[\text{MnP}]$ salts,¹⁴ but different from the parallel alignment of $[\text{MnP}][\text{TCNE}]$.^{1,2}

The susceptibility (χ) of the complex obeys the Curie-Weiss equation, $\chi = 1 / (T - \theta)$, where θ is -10 ± 1 K ($130 < T < 250$ K), and $+23 \pm 1$ K ($T > 250$ K). The observed effective moment is $5.10 \mu_B$ at 300 K, which is in good agreement with the value ($5.20 \mu_B$) expected for independent isotropic $g = 2$, $S = 2$ of Mn^{III} and $S = 1/2$ of [1b][•] systems. A minimum in $\chi T(T)$ characteristic of 1-D antiferromagnetic coupling is observed at 115 K. The $\chi(T)$ value has the maximum at 10 K. The in-phase component, $\chi'(T)$, of an AC susceptibility measurements shows a sharp maximum at 2.3 K attributable to the ordering temperature (T_c) of the material. The studies of TCNQ based $[\text{MnP}]$ ET salts having uniform chain structures are now in

progress.

This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Area (#11136222 "Metal-assembled Complexes" to K.-i.S., #11166238 "Molecular Physical Chemistry" to K.-i.S., and #10146103 "Creation of Characteristic Delocalized Electronic Systems" to Y.S.) from the Ministry of Education, Science, Sports and Culture, Japan and the U.S. NSF Grant No. CHE-9320478 to J.S.M.

References and Notes

- 1 J. S. Miller and A. J. Epstein, *Chem. Commun.*, **1998**, 1319.
- 2 E. J. Brandon, A. M. Arif, J. S. Miller, K.-i. Sugiura, and B. M. Burkhardt, *Cryst. Engng.*, **1**, 97 (1998).
- 3 a) W. Kaim and M. Moschersch, *Coord. Chem. Rev.*, **129**, 157 (1994). b) K. R. Dunbar, *Angew. Chem., Int. Ed. Engl.*, **35**, 1659 (1996).
- 4 a) E. Dormann, *Synth. Met.*, **71**, 1781 (1995). b) H. Winter, M. Kelemen, E. Dormann, R. Gompper, R. Janner, S. Kothrade and B. Wagner, *Mol. Cryst. Liq. Cryst.*, **273**, 111 (1995). c) H. Winter, E. Dormann, R. Gompper, R. Janner, S. Kothrade, B. Wagner, and H. Naarmann, *J. Magn. Magn. Mater.*, **140-144**, 1443 (1995). d) J.-S. Li, Y.-S. Feng and Z.-Y. Men, *Gaodeng Xuexiao Huaxue Xuebao*, **19**, 732 (1998); *Chem. Abstr.*, **129**, 183384c (1998). e) J. S. Miller, C. Vazquez, R. S. McLean, unpublished results. f) Y. Shimizu, Osaka National Research Institute, personal communication, 1999.
- 5 S. Mikami, K.-i. Sugiura, J. S. Miller, and Y. Sakata, *Chem. Lett.*, **1999**, 413.
- 6 Complex formation reactions were carried out in a glove box with less than 1 ppm oxygen. A filtered hot solution of **2a**⁵ (50.0 mg, 60 mmol) dissolved in 20 mL of boiling *p*-xylene was added to **1b** (14.0 mg, 60 mmol; TCI Co., Ltd) dissolved in 20 mL of hot *p*-xylene. After standing for overnight, black-green crystals formed and were harvested by vacuum filtration and dried under vacuum for 3 h, 30.0 mg (38%). Even after a vacuum drying, elemental analysis and thermogravimetry analysis indicates that the sample incorporates two *p*-xylene molecules. This value was used for diamagnetic correction. Anal. Calcd for $C_{102}H_{100}Mn_1N_8$: C, 80.66; H, 6.30; N, 8.75%. Found: C, 80.38, H, 6.11; N, 8.99%.
- 7 The spectrometers were calibrated so that the Au4f_{7/2} peak of the clean sputtered metals appeared at 84.0 eV. IPs are reproducible to a precision of $\leq \pm 0.10$ eV. C1s = 284.8, N1s = 399.0 Mn2p_{3/2} = 642.8 and Mn2p_{1/2} = 654.6 eV.
- 8 K.-i. Sugiura, S. Mikami, K. Iwasaki, S. Hino, E. Asato, and Y. Sakata, *J. Org. Chem.*, **1999**, submitted; for hexacoordinated Mn^{III} salt ($[\text{Mn}^{\text{III}}\text{TPP}][\text{TCNE}]$): Mn2p_{3/2} = 642.6 and Mn2p_{1/2} = 654.2 eV, for pentacoordinated Mn^{III} salt ($[\text{Mn}^{\text{III}}\text{TPP}]\text{Cl}$): 642.2 and 653.8 eV, for pentacoordinated Mn^{II} salt ($[\text{Mn}^{\text{II}}\text{TPP}][\text{pyridine}]$): 641.1 and 653.1 eV.
- 9 Crystal data for $C_{86}H_{80}MnN_8$ {[2b][1b]}^{2p-Xylene}, $Z = 2$, $M = 1280.57$, triclinic $P\bar{1}$ (#2) space group: $a = 15.460(5)$ \AA , $b = 16.781(7)$ \AA , $c = 15.429(6)$ \AA , $\alpha = 115.28(3)$ °, $\beta = 90.876(31)$ °, $\gamma = 90.881(33)$ °, $V = 3618(2)$ \AA^3 , $\rho_c = 1.175$ g cm^{-3} , $\lambda = 0.71070$ \AA , $T = -65 \pm 1$ °C, $2\theta_{\text{max}} = 50.0$ °, $R(R_w) = 0.076$ (0.093), Goodness-of-Fit = 1.38, reflection-parameter ratio = 5.37 based on 4618 unique reflections with $I > 3\sigma(I)$. Data were collected on a Rigaku AFC5R four circled diffractometer system with a graphite monochromated Mo-K α radiation (50 KV X 200 mA) and the structure was solved by a teXsan crystallographic software package from Rigaku.
- 10 J. S. Miller, C. Vazquez, N. L. Jones, R. S. McLean, and A. Epstein, *J. Mater. Chem.*, **5**, 707 (1995).
- 11 J. S. Miller, C. Vazquez, J. C. Calabrese, R. S. McLean, and A. J. Epstein, *Adv. Mater.*, **6**, 217 (1994).
- 12 D. K. Rittenberg, K.-i. Sugiura, Y. Sakata, I. A. Guzei, A. L. Rheingold, and J. S. Miller, *Chem. Eur. J.*, **5**, 1874 (1999).
- 13 Based on the large esds these values are marginally distinguishable.
- 14 a) 28.5° for $[\text{MnP}][\text{imidazole}]$: J. T. Landrum, K. Hatano, W. R. Scheidt, and C. A. Reed, *J. Am. Chem. Soc.*, **102**, 6729 (1980). b) 34.9° for $[\text{MnP}][\text{HCO}_2]$: P. Turner, M. J. Gunter, T. W. Hambley, A. H. White, and B. W. Skelton, *Inorg. Chem.*, **31**, 2295 (1992). c) 46.0° for $[\text{MnP}][\text{MeC}_6\text{H}_4\text{C}_5(\text{CN})_6]$: K.-i. Sugiura, S. Mikami, T. Tanaka, M. Sawada, and Y. Sakata, *Chem. Lett.*, **1998**, 103. d) 50.3° for $[\text{MnP}][\text{C}_3(\text{CN})_5]$: M. L. Yates, A. M. Arif, J. L. Manson, B. A. Kalm, B. M. Burkhardt, and J. S. Miller, *Inorg. Chem.*, **37**, 840 (1998). e) 64.1° for $[\text{MnP}]_2[\text{TCNQ-TCNQ}]$: in Ref. 5.